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A simple equation of state is used to calculate the bulk modulus, Joule- 
Thomson inversion temperature, and isobaric expansivity of dense fluids (with 
density greater than the Boyle density). The EOS predicts the following 
regularities: (i) the linearity of the bulk modulus versus pressure for each 
isotherm of a dense fluid for a range of about 100 MPa for subcritical fluids and 
about 1000 MPa for supercritical fluids, (ii) the linearity of bulk modulus with 
respect to temperature for each isochore, and (iii) the linearity of inverse 
isobaric expansivity with pressure for each isochore. The regularities have been 
found to be consistent with experimental observations. The calculated Joule- 
Thomson inversion temperature shows good agreement with experimental data 
in the range of validity of the EOS. 

KEY W O R D S :  dense fluids; bulk modulus; isobaric expansivity; Joule- 
Thomson inversion temperature. 

1. I N T R O D U C T I O N  

A general regularity has recently been reported for dense subcritical and 
supercritical fluids [ 1-I. The regularity has been tested with the experimen- 
tal data for nonpolar, spherical, linear, polar, and quantum fluids, and also 
fluid mixtures [2], and has been found to be valid for all. In the present 
work this regularity (EOS) will be used to find analytical expressions for 
selected thermophysical properties of fluids, and the results will be com- 
pared with experiment. A few new regularities will be explored. 

The regularity stated is that ( Z - 1 ) v  2 is linear with p2, where 
Z = p v / R T  is the compression factor, and p = 1/v is the molar density. The 
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regularity holds for densities greater than the Boyle density and tem- 
peratures below about twice theBoyle temperature. The regularity shall be 
referred to as the "linear isotherm regularity" (LIR). 

The LIR is stated as 

( Z -  1) v 2 = A  + B f  (1) 

A simple model was used to obtain the temperature dependence of A and 
B parameters as 1- I ] 

A = A 2 - A I /RT 

and 

B = B J R T  (2) 

where the constants A, and B~ are related to the intermolecular attraction 
and repulsion, respectively, and the constant A 2 is related to the nonideal 
contribution of the thermal pressure. 

The LIR, as given by Eq. (I), is shown to be compatible with the 
van der Waals and the Ihm-Song-Mason I-3] equations of state. 

2. CALCULATION OF BULK MODULUS 

The bulk modulus (reciprocal compressibility) is defined as 

K =  --V( Sp /SV ) T = p( ~p /Op ) T (3) 

With Eq. (1) forp as a function of p, Eq. (3) reduces to 

K =  RT(p + 3Ap 3 + 5Bp 5) (4) 

Empirical observations of Tait in 1888, and their modification by 
Murnaghan suggested that the bulk modulus for each isotherm of a liquid 
is linear with respect to pressure [4]. Such a linearity is known as the 
Tait-Murnaghan equation [5 ], 

K = K o  + K~p (5) 

where Ko and K~ are fluid and temperature dependent. A theoretical basis 
for this equation is given by Song et al. [6] using an equation of state 
based on statistical mechanical perturbation theory. 

By substituting p v / R T  for Z in Eq. (1), and eliminating p between 
Eq. (1) and Eq. (4), the bulk modulus may be obtained in terms of pressure 
and temperature. It is not obvious that the elimination of p will lead to 
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linear or even nearly linear relation between K and p for each isotherm. 
However, the elimination will not be performed analytically since it is 
simple to carry out the elimination of p numerically. 

The values of A and B for a fluid can be calculated at any temperature 
by plotting ( Z -  1) v'- against p-', using experimental p-v-T data for that 
isotherm. These values along with the density at each T and p can be used 
to calculate the bulk modulus at that temperature and pressure by Eq. (4). 
We have used the summary of Stewart and Jacobsen [7]  and the 
experimental data of Robertson et al. [8]  to calculate the bulk modulus for 
Ar. The results for one subcritical and two supercritical isotherms are 
presented in Fig. 1. 

According to the one-fluid approximation [9] ,  it is expected that the 
LIR can be applied to dense mixtures as well. In this case, the A and B 
parameters both will depend on the composition of the mixture. Excellent 
linearity for the ( Z - l ) v ' -  against p-' plot was obtained from the 
experimental data of Kubota et al. [' 10] for the strongly hydrogen-bonded 
mixture of H 2 0 + C H 3 O H .  Therefore from knowledge of A and B, the 
bulk modulus may be calculated for the mixtures for each isotherm and for 
any particular composition. The results of such a calculation is presented 
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Fig. 1. Reduced bulk modulus versus pressure for isotherms 
of argon for a suberitical isotherm of 150 K (0) and two 
supercritical isotherms of 200 K (m) and 308 K (O). 
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Fig. 2. Bulk modulus (divided by RT) versus pressure 
isotherms of equimolar mixtures of methanol and water at 
283K(�9 348K(�9 

for the two isotherms of the H 2 0  + CH3OH mixture with equimolar com- 
position in Fig. 2. 

The results given in Figs. 1 and 2 suggest that the bulk modulus of 
dense fluids varies linearly with the pressure for each isotherm at low 
pressures. However, it is well-known that the linearity deteriorates at high 
pressures and higher-order terms, i.e., p2, p3, etc., must be included in 
Eq. (5) [5, 6]. 

It is interesting to note that the Tait-Murnaghan equation [Eq. (5)] 
is valid in a larger pressure range for supercritical dense fluids (about 
1000MPa) than subcritical dense fluids (about 100 MPa); see Fig. 1. 
The Tait equation was originally proposed for liquids ( T <  To), and it is 
interesting to note that it has a greater validity for supercritical dense 
fluids. 

Another important result (regularity) given by the LIR may be seen by 
expressing the explicit temperature dependence of A and B in Eq. (4): 

K = p3(5Bt p2 __ 3A 1 ) + pR( 1 + 3A2p 2) T (6) 

This equation shows that the bulk modulus is linear with respect to tem- 
perature for each isochore. Values of the bulk modulus reported by Street 
[ 11] for argon (interpolated to suitable values) were used to check this 
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Fig. 3. Bulk modulus (divided by p~R) against temperature for 
argon isochores at p=33 (.), p=35 (�9 and p=37 ( �9  
mol. L- 1. 

prediction. The results are shown in Fig. 3. The prediction seems to hold 
fairly well in the limited range of data reported. 

3. J O U L E - T H O M S O N  INVERSION TEMPERATURE 

The Joule-Thomson coefficient IZjT = (aT/OP)H is given by 

/'/JT Cp = T(av/OT)p -- v (7) 

Using Eq. (1) and substituting p v / R T  for Z, one can obtain (av/aT)p and 
substitute the result in Eq. (7). The final result is 

p( 3A ~ -- 2A , .RT- -  5B1 p2) 
PJT Cp = R T +  3 p 2 ( A z R T  - A l) + 5B1 p4 (8) 

Therefore, the inversion temperature, Tiny, for which/zja-= 0, is given by 

Ti.v = ( --5B2 p2 + 3 A I ) / 2 A 2 R  (9) 
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If p is eliminated between Eq. ( I ) and Eq. (9), the inversion pressure, 
Pi,v, may be obtained in terms of T~.~ as 

Pinv=Rrinv[(3AI--2A2RrinvX~l/2-[ 5B 1 ,] A k~(3Al--2A2Rrinv~3/25B l ] 

B ( 3A'-  2A2RTi.)~":I + 
\ (10) 

The inversion curve for nitrogen is shown along with experimental 
values [12] in Fig. 4. Equation (10) may be used up to a maximum tem- 
perature of Ti.v = 3A J2A2R, above which the expressions in parentheses in 
Eq.(10) become negative. This temperature corresponds to 392K for 
nitrogen. In the range of validity of the LIR (p greater than the Boyle 
density), the agreement between calculated and experimental curves is 
satisfactory. 
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Fig. 4. Experimental and calculated Joule-Thomson inver- 
sion temperature versus pressure for nitrogen. The density of 
points on the solid and dashed portion of the calculated curve 
are above and below the Boyle density, respectively. The LIR 
is valid for densities above the Boyle density. 
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4. ISOBARIC EXPANSIVITY 

Equation (I) can be solved to obtain T(p, p) as 

T_P- (BIpS - -A lp3 )  
Rp + A2p3R 

1427 

(11) 

This expression may be used to calculate the isobaric expansivity 
o~=(av/OT)Jv. A more convenient quantity to calculate would be I/a, 
which can be obtained as 

1/o~=2p3(B, A2p4 + 2Bip2-A1) 1 + 3Azp 2 
pR(1 + A2p2) 2 +pR(1 + A2p2) 2 p 

(12) 

The interesting point about this expression is that it predicts 1/0c to be 
linear with pressure for isochores. This prediction (another new regularity) 
is checked with experimental values of ~ given by Street [ 11 ] (with inter- 
polation to suitable densities). The results are plotted in Fig. 5 and show 
good linearity in the limited range of data studied. 
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Fig. 5. Inverse isobaric expansivity versus pressure for argon 
isochores at p=30 (.), p=33 ( 0 ) ,  and p=35 ( l l )  mol. L -1. 
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5. D I S C U S S I O N  

In spite of  the s implici ty  of  the EOS (LIR) ,  it turns  out  tha t  it is a very 
powerful  equa t ion  for dense fluids. Some advan tages  of  L I R  over the T a i t -  
M u r n a g h a n  EOS have a l ready  been examined  [ 2 ] .  In  this p a p e r  new 
regular i t ies  which are pred ic ted  by L I R  have been checked with exper imen-  
tal  da ta ,  and  their  val idi ty  has been verified. Since L I R  has no uppe r  den- 
sity limit, and  is valid for the dense supercr i t ical  i so therms up to twice the 
Boyle t empera ture ,  it m a y  be expected tha t  the s tated regular i t ies  will be 
valid for these fluids as well, even though  because  of  the lack of  exper imen-  
tal da t a  they have not  explici t ly been checked.  We m a y  also expect  tha t  the 
regular i t ies  will hold  for fluid mixtures.  

R E F E R E N C E S  

I. G. A. Parsafar and E. A. Mason, J. Phys. Cllem. 97:9048 (1993). 
2. G. A. Parsafar and E. A. Mason, J. Phys. Chem. 98:1962 (1994). 
3. G. Ihm, Y. Song, and E. A. Mason, J. Chem. Phys. 94:3839 (1991); FIuM Phase Equil. 

75:117 (1992). 
4. J. H. Dymond and R. Malhotra, hit. J. Thermophys. 9:941 (1988). 
5. J. R. Macdonald, Rev. Mod. Phys. 41:316 (1969). 
6. Y. Song, B. Caswell, and E. A. Mason, Int. J. Thermophys. 12:855 (1991). 
7. R. B. Stewart and R. T. Jacobsen, J. Phys. Chem. Ref. Data 18:639 (1989). 
8. S. L. Robertson, S. E. Babb Jr., and G. J. Scott, J. Chem. Phys. 50:2160 (I969). 
9. J. S. Rowlinson and F. L. Swinton, Liquids and Liquid Mixtures, 3rd ed. (Butterworth, 

London, 1982), pp. 287-288. 
10. H. Kubota, S. Tsuda, M. Murata, T. Yamamoto, Y. Tanaka, and T. Makita, Rev. Phys. 

Chem. Japan 49:59 (1979). 
1 I. W. B. Street, Physica 76:59 (1974). 
12. J. R. Roebuck and H. Osterberg, Phys. Rev. 48:450 (1935). 


